Pseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand’s Symbol Class

نویسندگان

  • Karlheinz Gröchenig
  • Thomas Strohmer
چکیده

We investigate pseudodifferential operators on arbitrary locally compact abelian groups. As symbol classes for the Kohn-Nirenberg calculus we introduce a version of Sjöstrand’s class. Pseudodifferential operators with such symbols form a Banach algebra that is closed under inversion. Since “hard analysis” techniques are not available on locally compact abelian groups, a new time-frequency approach is used with the emphasis on modulation spaces, Gabor frames, and Banach algebras of matrices. Sjöstrand’s original results are thus understood as a phenomenon of abstract harmonic analysis rather than “hard analysis” and are proved in their natural context and generality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 6 Pseudodifferential Operators on Locally Compact Abelian Groups and Sjöstrand ’ s Symbol Class

We investigate pseudodifferential operators on arbitrary locally compact abelian groups. As symbol classes for the Kohn-Nirenberg calculus we introduce a version of Sjöstrand’s class. Pseudodifferential operators with such symbols form a Banach algebra that is closed under inversion. Since “hard analysis” techniques are not available on locally compact abelian groups, a new time-frequency appro...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

On continuous cohomology of locally compact Abelian groups and bilinear maps

Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...

متن کامل

Time-frequency Analysis of Sjöstrand’s Class

We investigate the properties an exotic symbol class of pseudodifferential operators, Sjöstrand’s class, with methods of time-frequency analysis (phase space analysis). Compared to the classical treatment, the time-frequency approach leads to striklingly simple proofs of Sjöstrand’s fundamental results and to far-reaching generalizations.

متن کامل

Bracket Products on Locally Compact Abelian Groups

We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006